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A nonlinear model inspired by the tribological problem of a thin solid lubricant layer between two sliding
periodic surfaces is used to analyze the novel phenomenon of hysteresis at pinning or depinning around a
moving state rather than around a statically pinned state. The cycling of an external driving force Fext is used
as a simple means to destroy and then to recover the dynamically pinned state previously discovered for the
lubricant center-of-mass velocity. Depinning to a freely sliding state occurs either directly, with a single jump,
or through a sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of phase-
locked states and stick-slip motion in static friction, and can be interpreted in terms of the appearance of
traveling density defects in an otherwise regular arrangement of kinks. Repinning occurs more smoothly,
through the successive disappearance of different traveling defects. The resulting bistability and multistability
regions may also be accessed by varying mechanical parameters other than Fext. The hysteretic phenomena are
confined to the underdamped dynamics, and the overdamped dynamics of the same model is generally not
hysteretic, much like in static friction.
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I. INTRODUCTION

Nonlinear systems driven far from equilibrium exhibit a
very rich variety of complex spatial and temporal behaviors
�1�. In particular, in the emerging field of nanoscale science
and technology, understanding the nonequilibrium dynamics
of systems with many degrees of freedom which are pinned
in some periodic potential, as is commonly the case in solid-
state physics, is becoming more and more often an issue.
Friction belongs to this category too, because the micro-
scopic asperities of the mating surfaces may interlock �2,3�.
Simple phenomenological models are important, as they of-
ten give not only qualitative understanding of experimental
findings, but also fair quantitative agreement with nanoscale
tribology data, and with realistic simulations of sliding phe-
nomena �4�. In this line of simplified approaches, studies are
typically restricted to describing microscopic dynamics in
one or two spatial dimensions. The substrates defining the
moving interface are modeled in a simplified way as purely
rigid surfaces or as one- or two-dimensional �1D or 2D� ar-
rays of particles interacting through simple �e.g., harmonic�
potentials. Despite such a crude level of description, this
class of approaches frequently reveals the ability of model-
ing the main features of the complex microscopic dynamics,
ranging from regular to chaotic motion �5–7�.

One of the pervasive concepts of modern tribology—with
a wide area of relevant practical applications as well as fun-
damental theoretical issues—is the idea of free sliding con-
nected with incommensurability. When two crystalline work-
pieces with incommensurate or misaligned lattices are
brought into contact, the minimal force required to achieve
sliding, i.e., the static friction, should vanish, at least pro-
vided the two crystals are stiff enough. In such a geometrical

configuration, the lattice mismatch can prevent interlocking
of the two periodic corrugations and the resulting collective
stick-slip motion of the interface atoms, with a consequent
dramatically reduced frictional force. Experimental observa-
tion of this sort of superlubric and anisotropic regime of
motion has been reported recently �8,9�. The remarkable con-
clusion of frictionless sliding is drawn most naturally, in par-
ticular, in the context of the 1D Frenkel-Kontorova �FK�
model �see Ref. �5� and references therein�. However, the
physical contact between two solids is generally mediated by
so-called “third bodies,” and the role of incommensurability
has been recently extended �10� in the framework of a driven
1D model inspired by the tribological problem of two sliding
interfaces with a thin solid lubricant layer in between. The
frictional interface is thus characterized by three inherent
length scales along the sliding direction: the periods of the
bottom and top substrates, and the period of the embedded
solid lubricant structure. In particular, in the presence of a
uniform external driving velocity, the interplay of these in-
commensurate length scales can give rise to intriguing dy-
namical phase locking phenomena and surprising velocity
quantization effects �11,12�.

Previous numerical and theoretical studies of this con-
fined tribological model �11–13� discovered a quantization of
the lubricant center-of-mass �CM� relative velocity and
found it to be related to the pinning of topological density
excitations �kinks� to the substrate of closest periodicity.
More recent work �14� highlighted a strict analogy of these
dynamical pinning phenomena to the ordinary commensurate
pinning of static friction �15,16�. The proposed mapping be-
tween this dynamical pinning and that of static friction was
numerically explored by analyzing the effect of an additional
external driving force Fext, equal for all lubricant particles.
Dynamical pinning is signified by the lubricant CM relative
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velocity remaining robustly locked to the quantized plateau
value �a value strictly and analytically determined by spatial
periodicity ratios alone� up to a critical force threshold,
above which quantization is destroyed.

It was also found that as long as inertial effects are non-
negligible compared to dissipative forces �underdamped re-
gime of motion�, the adiabatic variation �increase and de-
crease� of the external driving force gives rise to a large
hysteresis loop in the vcm−Fext characteristics, not unlike de-
pinning in static friction �5,15�. The present paper focuses
precisely on the hysteretic behavior around a dynamical
quantized steady state that this system exhibits, and discusses
similarities and differences between such a dynamical lock-
ing and the more usual static pinning. By exploiting configu-
rations where the dynamics of individual kinks is easy to
monitor visually, the mechanism of hysteresis will be clari-
fied. Given the practical difficulty of an experimental setup
where an equal driving force is applied to each lubricant
particle on the fly, the Fext term may be seen more as a useful
mathematical device rather than a realistic suggestion for fu-
ture measurements aimed at studying dynamical depinning.
On the other hand, we will show with concrete examples that
the hysteretical destruction and recovery of the CM velocity
plateau can be easily recovered when parameters other than
Fext are cycled, thus proposing practical possibilities to ad-
dress the dynamical hysteresis in experimental tribological
investigations.

II. CONFINED LUBRICANT MODEL: NUMERICAL
SIMULATIONS

We will work with the one-dimensional generalization of
the standard FK model introduced in Refs. �11,12�, consist-
ing of two rigid sinusoidal substrates, of spatial periodicity
a+ and a−, and a chain of harmonically interacting particles,
of equilibrium length a0, mimicking the sandwiched lubri-
cant layer, as sketched in the inset of Fig. 1. The harmonicity
of interactions within the lubricant chain is merely a simpli-
fying assumption, since test simulations with anharmonic in-
terparticle potentials �e.g., Morse and Lennard-Jones� also
revealed the ubiquity of the observed phenomenology. The
two substrates move at a constant relative velocity vext=v−
−v+. In particular, we select the reference frame where v+
=0 and v−=vext. The equation of motion of the ith lubricant
particle is

mẍi = −
1

2
�F+ sin

2�

a+
xi + F− sin

2�

a−
�xi − vextt��

+ K�xi+1 + xi−1 − 2xi� − 2��ẋi − vw� + Fext, �1�

where m is its mass. F± are the amplitudes of the forces due
to the sinusoidal corrugation of the substrates. Presently we
set F− /F+=1 as the least biased choice. Once again, we have
a number of checks that the results we are going to describe
are relatively independent of this strict choice. K is the chain
spring constant defining the harmonic nearest-neighbor inter-
particle interaction. The penultimate damping term in Eq. �1�
originates from two symmetric frictional contributions add-
ing as follows: −��ẋi−v+�−��ẋi−v−�=−2��ẋi−vw�, where �

is a viscous friction coefficient accounting phenomenologi-
cally for degrees of freedom inherent in the real physical
system �such as substrate phonons, electronic excitations,
etc.� which are not explicitly included in the model; this fixes
the reference speed of the dissipative term: vw= 1

2 �v++v−�
�17�. In order to probe the strength of quantization, and even-
tually address hysteresis, an additional constant force Fext is
applied to all chain particles and varied up and down adia-
batically. The infinite chain size is managed—in the general
incommensurate case—by means of periodic boundary con-
ditions �PBCs� and finite-size scaling �13�. We set overall
a+=1, m=1, and F+=1 as basic units, and express implicitly
all mechanical quantities in terms of natural model units ob-
tained as combinations of these three basic quantities �13�.

As previously found �11–14� the detailed behavior of the
driven system in Eq. �1� depends crucially on the relative
�in�commensurability of the substrates and the chain. The
relevant length ratios are defined by r±=a± /a0; we assume
r−�min�r+ ,r+

−1�, whereby the �+� substrate has the closest
periodicity to the lubricant, the �−� slider the furthest. Under
rather general dynamical conditions, the lubricant slides with
a quantized mean velocity vplateau relative to the �+� sub-
strate. The plateau phenomenon was explained by the static
pinning of the topological solitons �kinks� that the embedded
chain forms with the �+� substrate, to the �−� slider �11,13�.
Specifically, the quantized-plateau lubricant velocity ratio,

vcm

vext
=

vplateau

vext
� 1 −

1

r+
, �2�

is strictly a function of the lubricant coverage r+ of the �+�
substrate �11�, i.e., of the absolute density �r+−1� /a+ of
kinks. For antikinks, r+�1, this density is negative, and so is
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FIG. 1. �Color online� Normalized velocity of the center of
mass, vcm/vext, as a function of the chain stiffness K in units of
F+ /a+, for vext=0.1�F+a+ /m�1/2, �=0.1�F+m /a+�1/2, and r+= �1
+�1/4� /2. Crosses: one-to-one kink coverage �=1 �r−�7.036�; dia-
monds: commensurate kink coverage �=5/4 �r−�8.795�; circles:
incommensurate kink coverage �= �1+101/2� /3 �r−�9.762�.
Dashed line: the quantized-plateau velocity ratio of Eq. �2�. Note
the logarithmic scale in the abscissa. Inset: a sketch of the driven
three-length-scale confined model.
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vplateau—namely, the lubricant slides backward �11�. Al-
though the perfect plateau velocity depends uniquely on r+,
the plateau dynamical stability and extension both depend
crucially on the kink coverage

� = a−
r+ − 1

a+
= r−�1 −

1

r+
� �3�

of the �−� substrate �for antikinks, ��0�. Concretely, as a
function, e.g., of the spring stiffness K, the quantized plateau
is very prominent in a range of K of the order unity but tends
to shrink for stiffer chains with larger K values, Fig. 1. The
plateau destabilization is complete for a general irrational �,
while the plateau survives up to indefinitely large K for com-
mensurate kink coverage �rational ��. The quantized velocity
plateau is finally particularly robust for perfect one-to-one
matching of the soliton and the �−� slider periodicities, �
=1 �14�. To illustrate these three typical cases, we consider
r+= �1+�1/4� /2�1.166 and the three values r−���1
−r+

−1�−1�7.036, 8.795, and 9.762, corresponding to the val-
ues �=1, �=5/4=1.250, and �= �1+101/2� /3�1.387, re-
spectively. The choice of r+ near unity is especially advanta-
geous compared to values like the golden mean �1+51/2� /2
�1.618 generally used, because it gives rise to well sepa-
rated individual kinks, which allow a more transparent analy-
sis of the dynamics. Many qualitative features discussed for
the specific ratios r± considered here are in fact also found
for general values of r±, and thus this specific choice of
length ratios should not be considered especially restrictive,
as long as a correct distinction of different commensuration
property of �, Eq. �3�, is made.

The equations of motion �1� are integrated using a stan-
dard fourth-order Runge-Kutta algorithm. The system is ini-
tialized with the chain particles placed at rest at uniform
separation a0, and the top substrate is made to slide at the
imposed constant velocity v−=vext. For Fext=0 and a wide
range of model parameters, after an initial transient the sys-
tem reaches a steady state, where all dynamical quantities
other than particle positions fluctuate but show no systematic
drift. For wide ranges of parameters, exemplified in Fig. 1 by
the spring stiffness K, the lubricant reaches the expected pla-
teau state of normalized time-averaged velocity vplateau/vext
�0.142, Eq. �2�, the same for the three geometries intro-
duced above.

Adiabatic upward and downward variation of the external
force Fext is realized by changing Fext in small steps and
letting the system evolve at each step for a time long enough
for all transient stresses to relax. This allows us to gauge the
robustness of the plateau state as a function of the system
parameters, e.g., of K. In order to determine the critical val-
ues of Fext, where the plateau is abandoned and retrieved,
and in particular to do that with great accuracy and a reason-
ably small number of separate simulations, we first incre-
ment Fext in steps of 10−3F+, and then reduce the step width
using a bisection scheme around the critical force.

III. RESULTS

For concreteness, we begin with the specific example �
=5/4, and pick an intermediate value of the chain stiffness

K=5F+ /a+, common to all plateaus of Fig. 1. We start inves-
tigating the plateau destruction or recovery induced by vary-
ing the external force Fext through a sequence of adiabatic
increases and decreases �18�. The resulting CM velocity is
displayed in Fig. 2 for two different external driving veloci-
ties vext. A clear hysteretic loop emerges, with qualitatively
similar features for high �upper panel� and low �lower panel�
values of vext. Interestingly, and somewhat unexpectedly, the
hysteretic regions are systematically broader for larger slid-
ing velocities vext. We will return to this point later on.

The exact plateau state implies a kind of dynamical in-
compressibility, namely identically null response to perturba-
tions or fluctuations trying to deflect the CM velocity away
from its quantized value. Indeed, as long as Fext remains
below a critical threshold Fc

+↑, it does perturb each individual
single-particle motion, but has no effect whatsoever on vcm,
which remains exactly pinned to the quantized value, as is
indeed expected of an incompressible state. This behavior
contrasts with all observed nonplateau sliding states, where
vcm increases monotonically with Fext. This plateau state is
reminiscent of the pinned state of static friction, where a
minimum force �the static friction force� is required to ini-
tiate the motion, except that here in the starting “pinned”
plateau state the lubricant chain particles are moving relative
to both substrates. The sudden upward jump of vcm taking
place at Fext=Fc

+↑ can thus be termed a dynamical depinning.
The depinning transition line Fc

+↑, appears as a “first-order”
line, with a finite jump �v in the average vcm and a clear
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FIG. 2. �Color online� Hysteresis in the vcm−Fext characteristics
for a confined chain of intermediate spring stiffness �K=5F+ /a+�,
and length ratios r+= �1+�1/4� /2, �=5/4 �r−�8.795�. The behavior
is shown for fast �vext=0.1, upper panel� and slow �vext=0.01, lower
panel� drive. Adiabatic increase and decrease of Fext �in steps of
10−3F+� are denoted by crosses and circles, respectively. Character-
istic hysteretic multistep features appear. Here �=0.1�F+m /a+�1/2,
and a chain of N=387 lubricant particles is simulated.
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hysteretic behavior: as Fext is reduced back, the depinned
state survives below Fc

+↑ down to a significantly smaller Fc
+↓,

where perfectly quantized plateau sliding is retrieved, as il-
lustrated in Fig. 2. Several hysteretic loops are in fact ob-
served in Fig. 2: a qualitatively similar multistep behavior
appears also for �=1 and �= �1+101/2� /3. We shall return
below to the nature of these steps. The large-Fext quasi-free-
sliding regime is characterized by vcm increasing continu-
ously, roughly proportionally to Fext /�, and superposed to
this general translational motion, by irregular single-particle
movements, contrasted to the periodic ��=1, 5 /4� or quasi-
periodic ��= �1+101/2� /3� individual-particle oscillations in
the plateau state.

The values of Fc
+↑, Fc

+↓, and �v are nontrivial functions of
the parameters. Specifically, Fig. 3 reports the K dependency
of these critical forces in the three considered cases. The
values of the critical forces are remarkably similar for K
�4, while important differences are observed as the springs
become stiffer. In particular, for unity coverage ��=1� the
plateau is very stable and extends to very large K, as ex-
pected in a fully commensurate case; see Fig. 3�a�. In con-
trast, for noninteger � the plateau becomes more fragile for
large K. For commensurate �=5/4 the plateau width de-
creases with some fast power law of K, and becomes numeri-
cally difficult to detect beyond K�60. For incommensurate
�= �1+101/2� /3 instead, the plateau shrinks and disappears at
finite K=KAubry

dyn �24: no sign of a quantized plateau is de-
tectable, e.g., for K=25. This unequal behavior for commen-
surate or incommensurate coverage � is understood in terms

of the mapping of the dynamical sliding model to the static
FK model, which was established in Ref. �14�. The hysteretic
depinning transition is observed through a significantly wide
K range in all three cases, but the depinning mechanism dif-
fers in some important detail.

A. Fully commensurate �=1

As illustrated in Fig. 3, for �=1 the plateau extends to
very large K, in a range of Fext of decreasing width �K−1.
K−1 describes precisely the asymptotic decrease of the sinu-
soidal interparticle distance modulation, residual after soli-
tons overlap one another in the large K limit. For very large
K, outside the right end of Fig. 3�a�, the asymptotic values of
this Fc

+↑ curve lie entirely in the negative Fext domain. The
explanation is that it takes a negative external force to
compensate the positive average dissipative “wind” force
Fw=−2��vcm−vw� acting on each lubricant particle. On the
plateau state this wind force amounts to

Fw = − 2��vplateau − vw� =
2 − r+

r+
�vext. �4�

In the absence of the external driving Fext, the wind force
alone is sufficient to disrupt the plateau at large K, where it is
more fragile, as seen at the large-K side of Fig. 1. However,
once the wind force is compensated away, the �=1 quantized
plateau extends to indefinitely large K.

The next result concerns hysteresis, still at �=1. Depin-
ning is discontinuous and hysteretical as exemplified in Fig.
2, but only up to a large but finite critical stiffness K=K�

�330. Near K� the bistability range Fc
+↑−Fc

+↓ closes up with
a power law Fc

+↑−Fc
+↓=B�K�−K�	, not unlike what was ob-

served in previous work �14� for the golden-mean ratio.
Above the critical stiffness, for K
K�, Fc

+↑�Fc
+↓, i.e., the

depinning transition is continuous, and characterized by what
appears to be a mean-field power law vcm−vplateau� �Fext

−Fc
+↓�1/2. For K�K� the plateau is abandoned through dif-

ferent mechanisms depending on the model parameters. In
Ref. �16� it was found that re-pinning in the continuous sine-
Gordon model proceeds first through a series of “cavity-
mode” states, and then a series of kink-antikink wave train
states, and a similar scenario is exhibited also by the discrete
FK chain �15�. We find that analogous phenomena occur here
for the repinning to the dynamical plateau, with defects in
the kink lattice taking the place of the kink-antikink pairs of
the single-chain FK model.

For soft enough chains, individual kinks are visible and
well distinct. For example, Fig. 4 �decreasing Fext� illustrates
the mechanism supporting deviations from the plateau for
K=5, the same value as Fig. 2. A kink vanishes at a �−�
lattice site and joins a second kink to form a mobile “bi-
kink.” This extra density accumulation “binds” substantially
less than a kink to the minima of the �−� potential. The
external force Fext acts on the bi-kink density lump and drags
it along to the right. Contrary to the bi-kink, the site with a
missing kink �“no kink”� remains pinned to the �−� potential
well, and is not dragged by the external force Fext. The mov-
ing bi-kink breaks the “quantized” motion by one single par-
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FIG. 3. �Color online� The �K ,Fext� phase diagram illustrating
the unpinning-repinning transitions for r+= �1+�1/4� /2, �=0.1,
vext=0.1, and for �a� one-to-one kink coverage �=1; �b� commen-
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= �1+101/2� /3. The white areas have perfect plateau dynamics, the
dotted region indicates quasifree sliding. Simulations done with N
=387 particles for �a� and �b� and with N=781 particles for �c�.
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ticle, and is responsible for displacing the lubricant CM ve-
locity slightly away from the exact vplateau.

The number of bi-kink–no-kink pairs tends to increase
rapidly with increasing Fext−Fc

+↓. The force Fc
+↑ necessary to

nucleate the first bi-kink–no-kink pair is sufficiently large to

sustain an avalanche of more bi-kink–no-kink pairs after the
first defect is nucleated. Trains of bi-kinks cross the chain,
producing essentially chaotic motions of the single lubricant
particles, provided that Fext�Fc

+↓. When, starting from this
dislodged, or depinned state, Fext is gradually reduced, bi-
kink–no-kink pairs annihilate, the number of these pairs re-
ducing steadily with time. The discrete, integer nature of the
defect-pair number originates the �gently sloping� discrete
downward staircase steps in the hysteresis loop, generally
similar to those shown in Fig. 2 �for a different ��. Since the
discrete effect of the disappearance of a single defect pair
becomes negligible in the infinite-size limit, the observed
multistep structure appears to be merely a finite-size artifact,
and for all that we can tell at present the infinite system
should exhibit no staircase steps. In the depinned state, so
long as Fext is strong enough, a bi-kink encounters a no-kink,
interacts briefly, and then continues to travel. When instead
Fext is reduced below Fc

+↓, as in Fig. 4, the encounter of a
bi-kink and a no-kink leads to reciprocal annihilation. The
amplitude oscillation still visible �but quickly damped� at the
right end side of the last frame of Fig. 4 reflects the waves
dissipating the excess �“binding”� energy of the bi-kink–no-
kink pair, in the process of recovering the perfect kink lat-
tice. When finally the kink lattice gets rid of the last defect
pair, the perfect plateau state is regained.

For a stiff enough chain, individual kinks become spa-
tially broad, and will for a fixed density extend over a size
larger than the average interkink distance a+ / �r+−1�. In this
limit the kink lattice reduces to a weak sinusoidal deforma-
tion, of amplitude �K−1 superposed to the average interpar-
ticle density. Despite this difference with the strong kink
lattice of the soft chain case, the external-force-induced de-
parture from the quantized velocity plateau occurs here
through a mechanism similar to that illustrated above for the
soft-spring case. A chain slippage by one particle �i.e., a dis-
tance a0� is promoted by a bi-kink and a no-kink moving in
opposite directions: when they collide, the bi-kink–no-kink
pair takes the aspect of a broad locally flat region of denser-
than-average and less-dense-than-average lubricant in the
otherwise perfect pinned kink lattice. As illustrated in Fig. 5,
a local flattening defect forms in the soliton lattice, similar to
the local amplitude suppression of a dragged charge density
wave �CDW� �19,20�. This defect is characterized by a
smooth “charge” separation, with the denser region being
driven to the right and the more rarefied region to the left by
the driving force, the external force acting like an electric
field on a CDW insulator. These defects travel in opposite
directions, as expected of opposite charges driven by an elec-
tric field. The crucial difference with the soft-spring case
�where as shown by Fig. 4, the no-kink defect remains
pinned to the �−� lattice� is that here both defects, the bi-kink
and the no-kink, are mobile and dragged by the external
force. As the two defects move apart, a perfect soliton lattice
reforms in between. In time, a right-moving bi-kink encoun-
ters a left-moving no-kink: these defects may again cross, or
else they may bind and annihilate in pairs. Annihilation oc-
curs when Fext is reduced below Fc

+↓ as in the soft-chain case
of Fig. 4. When instead Fext�Fc

+↓ the pair separates again,
with the rightward “positive” and leftward “negative” flat-
tenings suffering some phase shift, but traveling on, as in

kinks no−kink

bi−kink

no−kink

bi−kink

bi−kink − no−kink collision

� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � �perfect kink lattice

post−collision shakeup

FIG. 4. �Color online� Soft chain �K=5�. Four snapshots of a
60-particle section of the lubricant chain and �+/−� substrates
�lower and upper sinusoids�, at successive times separated by 14
time units �a+m /F+�1/2. The horizontal direction represents distance,
the dots the particle positions xi. Vertical displacements of dots
measure the distance xi−xi−1 of a given particle to its left neighbor:
on this scale, the horizontal solid and dashed lines indicate the
average interparticle distance a0, and the �+� lattice parameter a+,
respectively. The snapshots refer to r+= �1+�1/4� /2, �=1, Fext

=0.081 36 �decreasing�, and illustrate the crossing of the critical
line Fc

+↓, with the recovery of the plateau state obtained through the
disappearance of the last bi-kink–no-kink defect. The other param-
eters are �=0.1, and vext=0.1.
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Fig. 5. As soon as all defects annihilate, the kink lattice is
perfect, and the CM velocity recovers vplateau exactly. If the
defect pairs form at regular spatial separation within the
chain �with periodic boundary conditions� the corresponding
moving pattern leads to time-periodic fluctuations of the CM
velocity; that can also be seen as type-I intermittencies �21�.
Otherwise, when defect motion is chaotic, an irregular CM
dynamics is observed. Eventually, for indefinitely growing
chain stiffness K, each defect pair flattening region grows in
size, eventually covering the entire finite-size simulation,
which becomes at that point a poor representation of the
infinite-size thermodynamical limit.

Special attention deserves the critical point K��330,
where the hysteretic region ends. That point is different from
the plateau ending near K�170 which simply marks the
crossing of the transition line with the Fext=0 axis. This tran-
sition line, illustrated in Fig. 6, shows its discontinuous, first-
order nature even when K �rather than Fext� is varied adia-
batically across the line. We can indeed explore more
generally the phase diagram just outlined by varying the
chain stiffness K instead of Fext, i.e., moving horizontally
rather than vertically in Fig. 3. In particular, Fig. 6 details the
crossing of the first-order line of Fig. 3�a� along the Fext=0
line. Here we find Kc

↑�Kc
↓ for dynamical depinning and re-

pinning, respectively �22�.
Figure 7 illustrates the plateau boundaries under the ac-

tion of Fext, for varied external driving vext, for a rather stiff
chain �K=50�. As the friction-drag reference force Fw grows
linearly with vext, and this introduces a trivial compensating
trend Fc

±↑/↓�−Fw, it is convenient to remove the appropriate
linear drift by adding Fw, Eq. �4�, to the critical forces. The
static limit vext=0 is smooth, and this indicates a regime of
continuity from the static quasiperiodic three-length-scale

kinks

interacting bi−kink − no−kink

bi−kink

no−kink

no−kink

bi−kink

no−kink

bi−kink

kinks

FIG. 5. �Color online� Stiff chain �K=50�. Four successive
snapshots of the substrates and lubricant chain, separated by time
intervals of nine time units �a+m /F+�1/2. All notations and param-
eters are the same as in Fig. 4, except for K=50, Fext=0.006 85
�decreasing�, which falls in the region immediately above the criti-
cal line Fc

+↓, before the recovery of the plateau state.
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+�1/4� /2, �=1 �r−�7.036�. Adiabatic increase and decrease of K
are denoted by crosses and circles, respectively. Here �
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FIG. 7. �Color online� Driving-velocity dependency of the dy-
namical depinning and repinning forces Fc

+↑ Fc
+↓, Fc

−↓ Fc
−↑ �shifted

upward by the trivial Fw�vext contribution, Eq. �4��. vext is mea-
sured in units of �F+a+ /m�1/2, the chain stiffness K=50F+ /a+, and
all other parameters are as in Fig. 6.
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model of Ref. �23� to the dynamical sliding. Strikingly, the
plateau robustness against the external perturbing force Fext
and the widths of the hysteretical regions benefit from an
increased driving speed. For large vext�7 the plateau desta-
bilizes suddenly and eventually disappears.

B. Commensurate �=5/4

Having explored at length the �=1 commensurability, we
now turn to another kink lattice-slider system, still commen-
surate but with �=5/4, a weaker commensurability than �
=1. At �=5/4, in the perfect-plateau state one kink out of
four turns into a bi-kink, as illustrated in Fig. 8. �The bi-
kinks of the present ��1 case would be replaced by no-
kinks for ��1�. The pre-existence of a regular array of such
defects of the kink lattice allows for a significantly different
depinning mechanism, compared to the totally commensu-
rate �=1 case. Defects of the kink lattice are already present
prior to turning on the external force Fext, which only sets
them into motion, without a need to create them. For soft
springs �Fig. 8�a��, where the pinning energy barrier of these
defects is large, Fig. 3 shows that the critical forces needed
to set the defects into motion in this �=5/4 case are very
similar to those for �=1. For harder springs, defects increase
in size and can now affect several neighboring kinks, as il-
lustrated in Fig. 8�b�. These extended disturbances possess a
much smaller pinning energy to the �−� potential. As a con-
sequence, the plateau state is now exceedingly weak, con-
fined to an extremely narrow force range near −Fw; see Fig.
3. The ordered arrangement of defects still warrants some
amount of pinning, but the width Fc

+↑−Fc
−↓ of the pinned

region decreases much faster than in the �=1 case as soon as

the defect size exceeds the typical interdefect distance
a+ / �r+−1� /�, here occurring for K�10.

C. Incommensurate �= „1+101/2
… /3

Finally, at irrational �= �1+101/2� /3, some kinks are re-
placed by bi-kinks, but the incommensuracy of the coverage
leads to their irregular arrangement, as illustrated in Fig. 9.
For a sufficiently soft chain �represented by K=5 in Fig.
9�a��, the irregular distribution of single kinks and bi-kinks
remains statically pinned to the minima of the �−� substrate,
with a finite barrier to overcome for a bi-kink to migrate to
the next minimum. This barrier guarantees the existence and
robustness of the CM quantized velocity plateau �with a first-
order hysteretical boundary� in the present incommensurate
case, pretty much like for the commensurate cases. The en-
ergy barrier protects the plateau against the movement of
bi-kinks until K�KAubry

dyn �24. In contrast, for a harder chain
�K�KAubry

dyn �, illustrated by K=50 in Fig. 9�b�, the irregular
distribution of single kinks and bi-kinks drifts through the
chain at a speed approximately proportional to Fext+Fw, with
no sign of any pinned plateau: this indicates that the energy
barrier is here entirely removed by the irregular bi-kink con-
figuration produced by incommensuracy. The kink-kink re-
pulsion makes the bi-kinks increasingly extended objects as
K increases, until they become so broad that crossing the
maxima of the �−� potential costs negligible energy: the bi-
kink in the central region of Fig. 9�b� exemplifies precisely
one such slow hopping process. The transition between the
soft-chain dynamically pinned regime and the stiff-chain
fully unpinned state is analogous to the Aubry transition ob-

bi−kinkbi−kinkbi−kink

kinks

bi−kinkbi−kinkbi−kink
kinks

(a)

(b)

FIG. 8. �Color online� Typical plateau arrangements of the
�=5/4 commensurate soft K=5 �a� and hard K=50 �b� chain: a
regular arrangement of bi-kinks �one every four kinks�. The con-
ventions and all other parameters are the same as in Fig. 4, but for
Fext=−Fw.

bi−kink bi−kinkbi−kink bi−kink

kinks

bi−kink
hopping defect

kink

bi−kink

kink

(a)

(b)

FIG. 9. �Color online� �= �1+101/2� /3 incommensurate soft
chain K=5 �a� and hard chain K=50 �b�: irregular alternation of
kinks and bi-kinks. Pinning is realized for the soft chain, while even
with Fext=−Fw, so that vcm�vplateau, the K=50 hard chain is un-
pinned, with the defects slowly drifting along. The conventions and
all other parameters are the same as in Fig. 4.
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served in the static situation described by the FK model. The
kinks of the dynamical model play the role of the particles of
the static model.

D. Hysteresis against variation of other parameters

Conceptually, the dynamical plateau is abandoned and
recovered—often hysteretically—in the most natural way by
cycling the external Fext force, with a clear link and similar-
ity to the single-chain FK model. In practice, however, the
experimental realization of a uniform force acting equally on
each lubricant particle in flight is far from trivial. On the
other hand, the plateau can be abandoned and recovered,
even when different parameters are cycled. Within the
present model, the reason is that the dissipation � term has
itself the effect of diverting the CM velocity away from
vplateau. In a concrete laboratory configuration, moreover, be-
sides dissipative effects, other interactions too will tend to
push the lubricant slide at speeds other than vplateau. As an
example, defects and grain boundaries will tend to pin stati-
cally the lubricant to either substrate �24�. These other “ex-
ternal” forces compete with the tendency to dynamical pin-
ning: the latter tuned by other dynamical parameters, namely,
in the language of our model, K, F+, F−, and vext. Thus in a
practical straightforward experiment, cycling quantities such
as the sliding speed, or the load applied to the sliders should
lead to leaving or recovering the plateau dynamics, with hys-
teretic cycles similar to those exemplified by Fig. 2.

To illustrate this point within our model, a first example of
such a hysteretic cycle is represented by Fig. 6, where the
spring stiffness K is cycled. Along a similar scheme, the
perfectly legitimate interpretation of Fig. 7 as a phase dia-
gram suggests that the first-order line separating the free-
sliding regime from the perfect plateau could be crossed by
cycling vext rather than Fext. This cycle corresponds to track-
ing up and down the Fext=0 dashed path drawn there. The
resulting loop, shown in Fig. 10�a�, depicts the expected bi-
stability: vext is cycled up and down, and the perfect plateau
is abandoned at much larger speed than where it is recov-
ered. At large driving speeds, Fw increases, the dissipative
term dominates and makes the lubricant speed approach vw.

The depinning transition may also occur continuously,
when the transition line is crossed beyond the tricritical
point, i.e., for K�K�, in the strongly dissipative region,
where the viscous damping rate � /m is much larger than the
vibrational frequencies, decreasing as �K−1, of the soft kink
lattice around the minima of the �−� potential. In this regime
the dynamical depinning is apparently second order. In this
overdamped regime, shown, for example, in Fig. 10�b�, the
forward and backward trajectories become indistinguishable,
and hysteresis disappears. In this strongly dissipative regime,
we find, instead of the hysteretic jumps, a nonlinear depen-
dency of vcm vs the model parameters—here vext, but cycling
K or Fext would lead to perfectly analogous results—without
any bistability.

IV. DISCUSSION AND CONCLUSIONS

We have shown that starting from the quantized sliding
plateau state, previously found for a simple tribological

model of a confined layer, the sliding dynamics of the lubri-
cant exhibits a large hysteresis when an additional external
driving force Fext trying to push vcm away from its quantized
value is cycled. In analogy to depinning in ordinary static
friction �15�, the hysteretic dynamical behavior depends
strongly on whether the system degrees of freedom have suf-
ficient inertia �underdamped regime� or if, on the contrary,
the inertia is negligible �overdamped regime�. Hysteretic vs
continuous depinning occurs depending on whether the un-
pinning transition is crossed below or above a tricritical point
where hysteresis closes, and which marks the separation be-
tween the underdamped and the overdamped dynamics.

Hysteresis arises due to the great robustness of the quan-
tized dynamics, setting a large critical threshold Fc

+↑ to the
formation of mobile defects �initially depinned bi-kinks or
no-kinks�. Once at least one of these defects forms, an ava-
lanche process leads to a discontinuous jump to a free or
quasifree sliding regime. Recovery of the plateau starting
from the unpinned states only occurs at a much smaller
threshold Fc

+↓ needed to sustain the motion of already created
mobile defects.

Nontrivial differences are seen with static friction. The
first is that the dynamical pinning hysteresis cycle may be
larger in situations where the pinning itself could be intu-
itively considered more fragile, e.g., for larger external ve-
locity. Another feature �presently under investigation, not
discussed above� is that the sudden application of an external
force can sometimes leave vcm locked to the quantized value,
even if the applied force is larger than the dynamical depin-
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FIG. 10. �Color online� �a� Hysteresis loop at the plateau edge in
the vcm−vext characteristics for a confined chain of length ratios
r+= �1+�1/4� /2, �=1 �r−=7.036�. Adiabatic increase and decrease
of vext are denoted by crosses and circles, respectively. Here �
=0.1�F+m /a+�1/2 and Fext=0, which corresponds to the dashed path
of Fig. 7. �b� No hysteresis is observed in the overdamped regime
��=1.0�F+m /a+�1/2� along the same path.
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ning threshold Fc
+↑, obtained instead through the adiabatic

procedure sketched above. Once again, this is different from
static depinning, usually requiring smaller force �than Fs� if
applied suddenly �5�.

The present study concentrated on zero temperature. At
finite temperatures, the energy barrier to the formation of
defects such as bi-kinks and for defects “hopping” to neigh-
boring pinning sites can be overcome thermally. However,
preliminary results obtained through a Langevin dynamics
indicate that, so long as the thermal energy is much smaller
than the effective dynamical barrier �gap� for the creation of
a mobile defect, the velocity quantization is still observed to
a very good approximation. This means that at sufficiently

low temperatures the dynamical pinning should then not
change much. Even the hysteresis should remain, provided
that parameters such as Fext are cycled much faster than the
characteristic thermal relaxation times. Thermal effects are
currently under closer investigation.
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